@Item2Vec: Neural Item Embedding for Collaborative Filtering

[[Abstract]]

  • Many Collaborative Filtering (CF) algorithms are item-based in the sense that they analyze item-item relations in order to produce item similarities.

  • Recently, several works in the field of Natural Language Processing (NLP) suggested to learn a latent representation of words using neural embedding algorithms. Among them, the Skip-gram with Negative Sampling (SGNS), also known as [[word2vec]], was shown to provide state-of-the-art results on various linguistics tasks.

  • In this paper, we show that item-based CF can be cast in the same framework of neural word embedding.

    • Inspired by SGNS, we describe a method we name item2vec for item-based CF that produces embedding for items in a latent space.

    • The method is capable of inferring item-item relations even when user information is not available.

  • We present experimental results that demonstrate the effectiveness of the item2vec method and show it is competitive with SVD.

[[向量化召回统一建模框架]] 理解

  • 如何定义正样本。#card

    • Item2Vec认为对于被同一个用户在同一个会话交互过的物料,彼此应该是相似的,它们的向量应该是相近的。

    • 但是考虑到,如果让一个序列内部的物料两两组合,生成的正样本太多了。

    • 因此Item2Vec照搬Word2Vec,也采用滑窗,即只在某个物料前后出现的其他物料才被认为彼此相似,成为正样本。

  • 如何定义负样本。#card

    • 照搬Word2Vec,从整个物料库中随机采样一部分物料,与当前物料组合成负样本。
  • 如何 embedding #card
    image.png

  • 如何定义损失函数#card

    • word2vec neg loss

image.png

作者

Ryen Xiang

发布于

2017-02-20

更新于

2025-06-25

许可协议


网络回响

评论